PGXC_CTL Primer

Configuring and operating Postgres-XC database cluster
May 7th, 2014
Koichi Suzuki

Change History:

May 7th, 2014: Initial version.
Oct 2nd, 2014: Added license condition.

This article is licensed under Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License.

1. Introduction

This document is an outline of Postgres-XC database cluster configuration and operation
using pgxc_ctl. Pgxc_ctl will be found in the contrib module of postgres-xc distribution.
This module helps to configure and operate your Postgres-XC database cluster easily.
This saves much of the small but important things.

2. Plannings you Postgres-XC cluster

2.1 Postgres-XC overview

Before going into Postgres-XC configuration, please take a bit to consider if Postgres-XC
cluster is useful to your application. Unlike any other PostgreSQL replication cluster,
Postgres-XC is write-scalable PostgreSQL cluster. More servers you have, more
throughput you get, both in read and write. Of course, you can handle bigger databsae if
you have more servers and storages.

To achieve this, you should consider each table to be distributed (sharded) or replicated.
If tables are updated very frequently, you should consider them to be distributed. If they
are relatively static and are refered by distributed table or other replicated tables, you
should consider them to be replicated. This mixture will make most of the update local to
one of the datanode. Because each datanode operates in paralle, you can get both read
and write scalability.

-1/59 -

You can connect to any of the coordinators’, each of which provides full transaction ACID
capabiliy and transparent view to the database. That is, any update you make at any

coordinator is visible to any other applications connected to any coordinators without
delay. It behaves just like single database.

From your application, Postgres-XC cluster will be seen as shown in Figure 1.

Read/Write
Transaction Q

Same Timestamp
View

| % T
)

I

Partitioned/Repliated Tables

Figure1. How Postgres-XC is seen from your application.

While conventional PostgresSQL hot-standby configuration will be seen as in Figure 2.

' Coordinator is a component your application should connect to. XC has several other component

such as datanode, GTM and GTM proxy. They will be described some more in datail in the next
section.

-2/59 -

Read/Write Read Only
Transaction Transaction

Master

Different
Timestamp View

X
< \ Slave
X
Log-Shipping

Figure 2. PostgreSQL Hot Standby

To provide these features, Postgres-XC assumes all the (master) nodes should be running
normally while Postgres-XC runs. In other words, this architecture itself does not provide
HA capability. To incorporate HA capability, you should consider to configure a slave for
some of Postgres-XC components. This will be described in a later sections.

So far, Postgres-XC planner is best-tuned for OLTP applications. For data-warehouse
applications, you may need separate patch which devides complexed query into smaller
chunks which run in datanodes in parallel. StormDB developed such patch and is now is
available from Translattice, www.translattice.com.

Postgres-XC is based upon shared-nothing architecture. You don’t need any dedicated
hardware to run it. You just need commodity INTEL server runnign Linux.

If you are sure that Postgres-XC helps your application, this is the time you should learn
more about Postgres-XC. First of all, let’s leary structure of Postgres-XC database
cluster.

-3/59 -

2.2 Suported Platform

As mentioned above. Postgres-XC runs only on INTEL 64bit Linux at present.
Postgres-XC community welcomes any effort to run it on other platforms.

-4/59 -

2.3 Postgres-XC component
Overview of Postgres-XC component is shown in Figure 3.

SOL Statements from Applications

! | Local SOL \ Oth
\ ar
..‘—
| _* Datanodes

b : Coardinator \
c i
g \
% E ' .I...
e = Local SQL

GTM-F‘me el] Catalog Fanipru. AL Earsae
= P o = s -
¥ U0y Y
o e U o o
- - Datanode T T T __I“ — 1
| et
Cftmr g zzel e S o TrmdeTan
Fads | Ty A = Vesame)
* Catalog h
Command/Resp Diata
ONSe grouping

GTM

Figure 3. Postgres-XC component overview.
So far, Postgers-XC is composed of the following components.

1) Coordinator
Connection point from your application. This component receives all the SQL
statement from applications, make and optimize its execution plan by dividing it into
smaller chunks if needed, ship them to datanodes as described next and combine
all the result from them to return to applications.

2) Datanode
Data storage. Each table data, distributed or replicated, will go to one or more of
datanodes. This runs just like single PostgreSQL to execute local SQL statment
shipped from coordinators.

3) GTM
Provides distributed transaction control over all the coordinators and datanodes.
In short, this is an implementation of distributed MVCC?, distributed version of
PostgreSQL’s MVCC. This component also provides sequence.

2 Multi-Version Concurrency Control.

-5/59 -

4) GTM Proxy
You may not configure this component. GTM Proxy groups up commands from
coordinators and/or datanodes to save amount of network communication to GTM.

In document, each component may be called as “node”.

2.4 Whether distribute or repslicate tables?

This section describes how to design your database from Postgres-XC point of view. As
described in earlier section, Postgres-XC achieves read and write scalability bo the
combination of table distribution (sharding) and replication.

More stable tables should reside in all (or more than one) datanodes so that join operation
with distributed table can be done locally at datanodes.

Frequently updated tables should be distributed (other words, sharded) among more than
one datanodes so that updates can be performed in parallel. You should choose what
column to use as a key to determine the location of each row (distribution key or
distribution column). Distribution key could be its primary key. However, you should
also be careful to use distribution key as join key as much as possible. For this purpose,
you may want to add artificial column.

Following section describes how to determine what tables to distribute or replicated and
what distribution key to choose in some of database benchmarks which will be helpful to
your applications.

DBT-1

DBT-1 is a short-transaction application benchmark based on an online bookstore
application. Tables can be grouped into following five groups:

1. Customer, including address, order and payment

2. Shopping cart. Some may say shopping cart can be grouped to the customer.
Because the application may start to use shopping cart without customer assigned,
shopping cart tables should be a separate group.

3. Book inventory.

4. Book list.

5. Author.

We separated book inventory from the book list because the former is updated very
frequently and the latter is relatively stable.

Obviously, book list and author are relatively stable. While order/payment, shopping cart
and book inventry can be updated thousands of times per second, the book list and author
may be updated when new book is brought to the shop, may be onece or twice a day. In
the shopping, customers refer to book/author information very frequently, in other words,
they tend to be joined with first three groups of tables very frequently. Therefore, it is
quite reasonable to define the first three groups of tables as distributed tables and to

-6/59 -

define the rest of the table as replicated.
locally in a datanode where distributed table row is located.

This is very important step to determine your table distribution design.

In this way, most of the joins can be performed

It is ideal if you

application’s joins are done with a same key. Because it does not happen often, you

should be careful to choose what key to use to distribute tables.

In DBT-1, shopping cart

tables has to join with customer tables, such join has to be done across different

datanodes (cross-node join or cross-node operation).
completely, you can minimize this chance.

Although this is very hard to avoid

Figure 4 shows table distribution design based on the above considerations.

CLUSTOMER ORDERS ORDER_LIM ITEM SHOFRING_CART
E
) oL =}
= r 0C D oL 0 D I_TITLE
C_PASSWD T RTE OL_LID _AID
L FNAME 0 _SUB_ TOTA oL_QTY |_PUA_DQATE
C_LNAME o_TAx OL_DISCOUNT |_PUBLISHER
C_ADDR_ID O_TOTAL - dFMNTS |_SUSIECT
C_PHOME O_SHIP_TYRE A oLc D I
C_EMAIL 0/BILL_ADDR_G 1
C_SINCE Ol SHIS_ADOR_ID
C_LAST \ISIT O STATUS
C_LOGIN
C_EXPIRATION CC_XACTS _RELATEDS
o COUNT |_THLIMBMAIL
C_BALANCE - I_IMAGE
CFTD_PMT CX_IID | SRA
C_RIRTHOATE EE_PI\WNT |_COST
C_DATA CX,_NiK |_ANAIL et i
i c E'::L 23';2 Cisen SE::strlt_JuLeé \-\rrTnjlﬁD
__ ; CX. T I_PAGE opping Cal
Distributed with CXAUTHID |_RACKING
X MALT |_DIMENASIONS
Customer |D CX_XACT_DATE -
e 1
> [:)(© o I I SHOPPING_CART_LINE
SCL_SC_IC
ADDRESS ETOCK scLare
ADDR_ID ST LD . '.(::]HT
ADDR_STREETL Replicated s ;E:_ _2;-;[:7
ADDR_STREETZ =01 .H.ll."':lh.'.".
ADDR_CITY \ Y , 2L C D
ANDR_STATE '.I 1Y -
ADDR_ZIR COUNTRY L AUTHOR ht
ol oL_ID
g i Distributed with
oL_gTY ItemiD
OL_DISCOUNT
OL_COMMENTS
OL_C_ID

Figure 4. DBT-2 Tables Distribution Design.

-7/59 -

2.5 Number of servers, master and slave

You should carefully plan how many servers to use to configure your Postgres-XC cluster.
The minimum number of each components and recommended configuration is as follows:

GTM

You need one GTM at least. GTM is a crital component to run Postgres-XC cluster. It
provideds cluster-wide transaction management. It also provides sequence feature. In
this way, each coordinator/datanode can run in parallel maintaining global database
consistency among the components.

You should consider to configure GTM in a separate server. Because of the nature of its
feature, network workload of GTM is relatively high. On the other hand, its footprint to
storage, CPU, and memory is relatively small. You may consider to use lower
performance server for this.

If you are considering to configure HA feature, you should configure GTM slave as well.
GTM slave’s workload is similar to GTM and you may want to configure GTM slave in a
separate server too.

GTM Proxy

GTM Proxy is not the MUST in Postgres-XC. It groups up requests and response
between each transaction and GTM and reduces GTM network workload. If your
application looks busy, it will be a good choice to configure GTM proxy. If GTM Proxy
takes care of transaction running locally, interaction between GTM Proxy and transactions
will be made locally, without NIC and it is also a good choice to configure GTM Proxy in all
the servers where coordinators and/or datanodes are running.

Because GTM Proxy does not store any data, it does not need HA configuration. If
something is wrong, you can simply configure another GTM Proxy, reconfigure
coordinator/datanode and start it.

Coordinator and Datanode

In principle, Postgres-XC configuration is quite flexible. You can configure any number of
coordinators and datanodes. If you configure different number of coordinator and
datanode and configure them in different servers, you may have to be carefull about
worload balance. Just for simplicity, we recommend to start with configuring both
coordinator and datanode in a server, as well as GTM proxy.

You should have explicit reason not to do so.

Because Postgres-XC does not provide HA feature by its own, you need to configure
slaves of coordinator and datanode to build HA capability. ~ Simple configuration of
coordinator/datanode slave is to configure it in a server where another coordinator/data
master is configured. Figure 5 and Figure 6 illustrate such examples.

-8/59 -

GTM (M)

GTM Proxy GTM Proxy
Coordinator1(M) Coordinator2(M)
Datanode1(M) Datanode2(M)

QCOOM'nalOFN(S)
DatanodeN(S)

Coordinator1(S)

Datanode1(S)

GTM (S)

GTM Proxy

CoordinatorN(M)

e | DatanodeN(M) s

Coordinator{N-1)(S)

Datanode(N-1)(S)

Figure 5. Postgres-XC HA configuration example (circular configuration)

GTM (M) GTM (S)
GTM Proxy GTM Proxy
| Coordinator1(M) | Coordinator2(M)
| Datanode1(M) Datanode2(M)
: Coordinator2(S) | Coordinator1(S)
: Datanode2(S) l Datanode1(S)

Easier integration with Pacemaker

Figure 6. Postgres-XC HA configuraiton example (pair configuration)

-9/59 -

2.6 Configuration overview

As mentioned in the reference manual (latest reference manuall will be found at
Postares-XC document page, you can configure each component manually. Configuring
sigle PostgreSQL database takes much effort and you have to be very careful.
Postgres-XC, in nature, is much much more.

To avoid pitfalls you may encounter, Postgres-XC provides dedicated configuration and
operation tool called pgxc_ctl®. The rest of this paper will be focused of Postgres-XC
cluster confiugration and operation using this tool. Each internal steps will be provided in
each section so that you can try manual configuration and operatoin.

3 If you find any issues and bugs with pgxc_ctl, please report it to Postgres-XC general or bugs mailing
list. Mailing list will be available at Mailing List tab in https://sourceforge.net/projects/postgres-xc/

-10/59 -

http://postgres-xc.sourceforge.net/docs/1_2_1/

3. Building Postgres-XC binary and pgxc_ctl tool

You can obtain Postgres-XC source tarball from its download site or you can clone

Postgres-XC GIT repository to obtain its source code.

Pgxc_ctl source code comes with Postgres-XC release and Postgres-XC git repository.
is placed at contrib/pgxc_ctl directory. Whole directory looks like

[koichifbuildfarm:postgres—-xcl]s 1ls =F
COPYELGHT HISTOREY I-'ZI'Z-".I]."."'.{TI'i'_
GHUmakefile Makefile
EEALME
[koichifbuildfarm:postgres—-xc]$ 1ls -F contrib

config. log

aclocal.md config.status™ contrib/

GHUmakefile.in config/ configure* doc/

configure.in

Makefile

README

adminpack/

auth delay/
auto_explain/
btree gin/

btree gist/
chkpass/

citext/
caontrib-global .mk
cube/

dizlink/

dict int/
dict_=xsyn/
dummy _seclabelf
nce,

SRArTnNalsta

file fdw/
fuzzystrmatch/
hatore/

intagg/
intarravy/

isn/

1o/

ltree/

oidZname/
pageinspact/
passwordcheck/
pg_archiveclesanup/
pg buffercache/
pyg_freespacemap/s
pa_standby /s

Pg_stat_statements/

[koichi@buildfarm:postgres=-xc] §

g test fsyno/
pg_test_timing/
pg trgm/

pg upgrade/
py_upgrade_support/
po_xlogdump/
pagbench/
Facrypto/
pgrowlocks/
pgstattuple/
poxc_clean/
pagxc cbl/

pogxc ddl/
FpOxc_monitor/
postgres_fdw/

seq/

doc=xc/
arc/

sepgsgly

spif
gslinfo/
start-scripts/

taplefunc/
Lens
test

tesearch2/

parser/

unaccent/
uuid-ossp)
vacuumlof
worker spi/
xml2 /s

First of all, you should run configure tool at the top level of Postgres-XC source tree. You
may want to specify installation point and debug option as follows.

[koichi@buildfarm:postgres-xcl

checking build system type... xB6 64

|::I'||'_::_':ki:"-.'| hast system Lype. ..

checking which template to use... linux
checking
whether

for
checking for

checking NL3 is wanted... no

chacking default port number...
block =ize... SkB

checking for segment size... 1GB
HKE

16ME

checking for WAL block size...

checking for WAL segment size...
fomitted) .

[koichif@buildfarm:postgres-xc) %

unknown

linux=-gnu

*86 dd-unknown-linux-gnu

whether to build with 64-bit integer date/time support...

2432

.foconfigure --prefix=/home/koichi/pgxc --enable-debug

Yes

You can use all the configure options as you find in PostgreSQL. Here’s a couple of

issues you should notice.

1) Postgres-XC specific source line is distinguished by the simbol “PGXC” in C source

code and its header files. Configure propagates this to each Makefile.

-11/59 -

2) If you use CFLAGS option to specify options in gcc, optimization will be omitted.
The default optimation option is -O2. If you specify other options in CFLAGS and
would like to keep using -O2 option, please specify it explicitly.

Then, you can build Postgres-XC binary as follows:

[koichifbuildfarmipostgres-xclf make -j B

make -C sre oall
. {omitted) .

All of PostgresSQLl successfully made. Ready to install.

[koichifbuildfarm:postgres-xcl$

And then install.

(koichifbuildfarm:postgres-xcls make install

make -0 sro o install

FostgresSQL installation complete.

[koichifbuildfarm:postgres-xcls

Each contrib module will not be build automatically in this step. You should build them
using separately. In this paper, you need pgxc_ctl and pgxc_monitor. Pgxc_monitor tells
you if specified component is running or not.

[koichifbuildfarm:postgres-xc]i ed contrib/pgxe ctl

chidbuilldfarm:pgxee ctl]| S make

hifpuildfarm:pgxc ctl]f make install
foinfmkdir -p '/home/s/keichi/pgres/bin’

'fhomeskolchifpgxc/bin’

../pgxec_moniter

15 make

1% make install

ifarm:pgxs mon

-12/59 -

4. What is pgxc_ctl

Pgxc_ctl is a command line tool to help your Postgres-XC cluster configuration, operation
and management. Before you rul pgxc_ctl with your configuration, you should prepare
pgxc_ctl resources, which will be described in the next section.

Pgxc_ctl prompts you to type its command. If typed like is not pgxc_ctl command, it just
passes the line to your shell. Because of this, pgxc_ctl does not provide full shell
capability such as variables.

You can specify one pgxc_ctl command as pgxc_ctl command arguments. In this case,
pgxc_ctl will run specified command and exits. Examples will be shown later.

-13/59 -

5. Writing your cluster configuration

5.1 Overview of pgxc_ctl configuration file and environment

Pgxc_ctl configuration file is in fact a bash shell script. That is, you can write any bash
script which helps you to define your postgres-XC configuration. In later sections, you
will find many of such examples.

Default name of the configuration file is pgxc ctl.conf. You can specify other
configuration file with —c option to pgxc_ctl command. The path is absolute of relative to
pgxc_ctl directory as described in the next paragraph.

Pgxc_ctl assumes dedicated directory to store its log and other materials. The default
directory is SHOME /pgxc_ctl. You can change this by specifiying --home option when
you start pgxc_ctl.

Pgxc_ctl has some more options to cotrol its behavior such as log level and verbosity.
You can specify this in .pgxc_ct1 file placed in your home directory. Each line specifies
option and its value such as

[koichiBbuildfarm:~]5 cat .pgxe_ctl
Xxo_prompt "PGHCS
fverbose vy

flogMessage 'DEBUGI"
fprintMessage "DEBDG1T

fprintLocation vy
¥loglocaticon v

fdebug v
[koichiBbuildfarm:~]5

xc_prompt is pgxc_ctl promt in a string (does not support serial number or other fancy
staff as in bash). Verboseisy or n. logMessage is the level of the message goes to
the log. You can specify printMessage is the level of the message goes to the
terminal you're running pgxc_ctl. printLocation is for debug to print location of
pgxc_ctl source code with messages. Usually specify n. Debug also prints some more
message for debugging. Usually, specify n.

This file is optional. All the default values will be taken if no environment file is found.

Pgxc_ctl log will be printed to the directory pgxc log under pgxc_ctl directory unless you
specify this explicity with -1 option of pgxc_ctl.

-14/59 -

5.2 Get configuration file template
First of all, you may need configuration file template to begin with. First you don’t have
pgxc_ctl directory. In this case run pgxc_ctl from your home directory like this.

[koichifnode(ll:~]5 pgxe_ctl prepare

Installing pgxe ctl bash script as Jhemefkoichi/paxe etl/pgxe ctl bash.

ERROR: File "/home/koichi/pgxc _ctl/pgxc_ctl.conf" not found or not a regular file.
Ho such file or directory

Installing pgxc_ctl _bash script as Shomeskoichi/pgxc_ctl/pgxc_ctl_bash.

Reading configuration using fhome/koichi/paxe otl/pgxe ctl bash --homs
fhome/koichi/pgxe_ctl --configuration /Jhome/koichifpgxc_ctl/pgxc_ctl.conf

Finished to read configuration.

L Fll",""‘;;.:" |"""|"':I C:TAR'T" EEEAXEN TR EERNNTERE

Current directory: /home/koichi/pgxe_ctl
[kolchifnodell:~]5 1s pgxe_ctl
coordExtraConfig pqx:_ctl.cﬂnf pgxn_anf
[koichiBnodell:~]5

You can specify pgxc_ctl command in pgxc_ctl command line. With several messages,
your pgxc_ctl directory and configuration file are build.

You can specify configuration file name to build as:

[koichifinodell:~]5 pgxc_ctl prepare my_pgxc_ctl.conf

Installing pgxc_ctl bash script as Shome/koichi/pgxc_ctl/pgxc_ctl_bash.

ERROR: File "/home/koichi/pgxec ctl/pgxc ctl.conf" not found or not a regular file.
MHa such file or directory

Installing pgxc ctl bash script as Jhomeskoichifpgxc ctl/pgxe ctl bash.

keading configuration using fhome/koichispgxc_ctl/pgxc_ctl_bash --home
Fhome/koichi /paxe otl --configuration Shome/koichifpgxe etl/paxe otl.eonf

Finished to read configuration.

drode oo ok ok A A Eh.::;(’: |:'T'_. SIART dhkh Ak dhh ok

Current directory: /fhome/koichi/pgxc_ctl
[koichifinodell:~]3 ls pgxc_ctl
coordExtraConfig my_pgxc_ctl.conf pogxc logd
[koichifnodedl:~]5

Please note that you don’t have to make pgxc_ctl directory. If not found, pgxc_ctl will
make this directory when it runs.

Later on, we use $HOME/pgxc_ctl and pgxc_ctl directory and pgxc ctl.conf as
configuration file, both the default.

-15/59 -

5.3 How configuration file looks like

The next figure shows the outline of pgxc_ctl configuration file. Details of each portion will
be described later, section by section. Again, because the configuration file is bash script,
you can use bash capability to specify specific configuration. You will see how template
configuration uses this.

> option from pogwxe ctl command. Default

r addition for your convenience teo configurae

.
¥ Please understand that pgxc ctl prowldea only a subset of configuration which pgme ctl
¥ provide. Here's sewveral several assumpticns/restrictions pguxc_ctl depends on.

¥

L lomitted) oL
a} Killing nodes may end up with IPC reacurce eak, such as semafor and shared memory.

Gnly listening port {socket) will be cleaned with clean command.

9} ackup and restore are not supported in pase okl at present. Thia i3 a big task and
may need conslderable resource.
needed if you inwveka "deploy" command from pgxc_ctl utilitcy.

s variable.

owner of the

f the auper

First lines are comments for the general description how the configuration file is
composed. You may want to read this a bit carefully to avoid problems and pitfalls.

The configuration file’s goal is to specify values of pre-defined variables.

-16/59 -

5.4 Common configuration section

You will see common configuration section at the top. In this section, you define the
directory where your Postgres-XC binaries are installes, and the set of servers where
you’re configurating Postgres-XC cluster.

The section looks like:

pgxclnatallbir wariable is needed 1f you invoke "deploy® command from pgxec_ctl utility.
If don't wou
pgxc allD
- ERAT
paxcOwnarskoichi # owner of the Postgres-XC databaseds cluster, Here, we use this
both as linus user and database user. This must be
it L; WEEr 1 L; al ¢ conrdinator and datandde.
pgxclUser=5pgxcliwner # 05 user of Postgres-XC owne
Emp tmp # temporary
localTnpDir=-5tmpDlr ¥ temporary

¥y to thiz walue.

L
s o =

11e namsa ——> Meed to svochronize when original chancged.

pgxcinstallDir variable

First, you will see the variable pgxcInstallDir. This is the directory Postgres-XC
binaries are installed locally. This value is the -—prefix option value of configure
utility used to build Postgres-XC binary from the source code. If you run make and make
install, by specifying --prefix option as SpgxcInstallDir value, you will have
SpgxcInstallDir like this:

This is used to deploy these binaries to servers with deploy pgxc_ctl command. If you're
installing binaries with other means, you don’t have to worry about this variable value.

pgxcOwner variable

Second, you will see pgxcOwner variable. This variable specifies owner user of
Postgres-XC database.

pgxcUser variable

Next, you will see pgxcUser variable. This variable specifies operating system user of
each server you’re running Postgres-XC. Pgxc_ctl uses ssh for the operation of

-17/59 -

Postgres-XC component and assumes that key-based authentication is configured
between the server pgxc_ctl is running and other servers where you run Postgres-XC
components. Key-based authentication configuration is out of the scope of pgxc_ctl.

tmpDir variable

tmpDir variable specifies the work directory used in pgxc_ctl locally. Typical value can
be /tmp. Depending upon your operating system, another value can be preferred. You
may want to use SHOME/tmp or other user-specific directory for work.

localTmpDir variable

localTmpDir variable specifies work directory used in the servers where you're running
Postgres-XC components. Pgxc_ctl uses the same work directory among all the servers.

configBackup

configBackup variable specifies if you're backing up configuation file. When you
change Postgres-XC cluster configuration by adding/removing nodes or promoting slave to
master, pgxc_ctl updates your configuration file by adding new lines to specify such

changes. If you specify the value “y” to this variable, pgxc_ctl will backup this change to
the file specified by the followng variables.

(11}

The template specifies “n” but specifies its backup configuration for your help.
configBackupHost

configBackupHost variable specifies what server you'd like to backup your pgxc_ctl
configuration file. It will be a good idea to backup to different server so that you can take
this and run pgxc_ctl at this server when pgxc_ctl server fails.

configBackupDir

configBackupDir variable specifies the directory where pgxc_ctl configuration file

backup is stored. [f you don’t specify “y” to configBackup variable, you don’t have to
worry about this variable.

configBackupFile

configBackupFile variable specifies the file name of pgxc_ctl configuration backup. If

you don’t specify “y” to configBackup variable, you don’t have to worry about this
variable.

-18/59 -

5.5 GTM master configuration

Following is GTM master section of pgxc_ctl configuration template. It looks very simple.

S - . P
& GT mansd 1 have = [onlyl 2 GTHM maste n yo | ea- r e
4 *Fa u need Lo re I 1rE it by pguc u Le g pdate
% Ber f e i CRE=1 m nand
F will op the ren M. t = he o
4 Owearal
miame=gtm
F-——- Maste e e e
- A -
gtm terServer=node
mMasterfort 1
gtmMasterDl r=5SHOME fpgxc/ nodes S gtm
¥ Will be added gtm,conf for both Master and Slave {done at initilization cnlyl
J=TIOLE E d | r i = §

gtmName

gtmName variable defines the node name for GTM. GTM master and slave shares this.
Because we have only one GTM master in the cluster, you may not have a chance to use
this name in the cluster operation.

gtmMasterServer
gtmMasterServer variable is the server you are running GTM master.
gtmMasterPort

gtmMasterPort variable is TCP port number GTM uses to accept connections from
GTM-Proxy or coordinator/datanode backend. You should assign unique port number in
the host SgtmMasterServer.

gtmMasterDir

gtmMasterDir variable is the work directory for GTM master. Similar to PostgreSQL
server, GTM needs dedicated work directory to store its configuration file, status, log and
other information.

gtmExtraConfig and gtmMasterSpecificExtraConfig

In most cases, your GTM configuration is complete with above three configuration
parameters. Pgxc_ctl takes other configuration variables and composes GTM master
configuration file. If you want to specify extra configuration parameter to GTM master,
you can use gtmExtraConfig and gtmMasterSpecificExtraConfig variable.

-19/59 -

gtmExtraConfig variable specifies the file name where additional gtm.conf
configuration lines are stored. Contents of these files will go to gtm. conf file of both
master and slave. gtmMasterSpecificExtraConfig variable specifies the file name
where gtm. conf configuration lines only for GTM master is stored.

Details of gtm. conf file will be found at
http://postgres-xc.sourceforge.net/docs/1 2 1/app-gtm.html.

Defatul value of these variables are set to “none”, which means “nothing”. You can
specify the value “none” for file names if you don’t specify any.

pgxc_ctl specifies 1isten addresses, port, nodename startup configuration
parameters and you should not specify these configuration values in gtmExtraConfig or
gtmMasterSpecificExtraConfig files.

If you'd like to specify contents of, for example, gtmExtraConfig file, you can do it by
adding lines as shown below:

Because the configuration file is a bash script, these additional lines will setup the file.

-20/59 -

http://postgres-xc.sourceforge.net/docs/1_2_1/app-gtm.html

5.6 GTM slave configuration

GTM slave section of pgxc_ctl configuration template is as follows:

gtmSlave

This variable specifies if you use GTM slave. Specify “y” for this value if you are
configuring GTM slave. Otherwise, skip this section.

gtmSlaveServer
Specify the server name you’re running GTM slave.
gtmSlavePort

Specify the port number GTM slave accepts connections. This has to be unique in the
server you specified in gtmSlaveServer variable.

ggtmSlaveDir

Specify the work directory for GTM slave. This has to be unique in the server you
specified in gtmSlaveServer variable.

gtmSlaveSpecificExtraConfig

Specify the file name you put gtm.conf configuration file entries specifc to this GTM slave.
For details of gtm.conf, please refer to
http://postgres-xc.sourceforge.net/docs/1_2_1/app-gtm.html. You will find how to setup
this file in the configuration file in section 5.5.

pgxc_ctl specifies 1isten addresses, port, nodename and startup configuration
parameters and you should not specify these configuration values in
gtmSlaveSpecificExtraConfig file.

-21/59 -

http://postgres-xc.sourceforge.net/docs/1_2_1/app-gtm.html

5.7 GTM proxy configuration

GTM Proxy is not mandatory for Postgres-XC configuration. Because it provides GTM
slave promotion to the master without interpreting Postgres-XC cluster operation, you may
want to configure this as well unless you’re configuring Postgres-XC for the test locally.

As mentioned in sectopm 2.4, it's a good idea to configure a GTM proxy, a coordinator and
a datanode in a server for load balancing these components and leverage local socket.

GTM proxy configuration section looks like this:

gtmProxyDir

This is a shortcut to specify same value for gtmProxyDirs array elements as described
later.

gtmProxy

gtmProxy specifies if you are configuring GTM proxy. Specify “y” if you are configuring

GTM proxy. Specify “n” otherwise.
gtmProxyNames

gtmProxyNames specifies names of GTM proxies. Because GTM proxies are configured
in more than one server, each GTM proxy need to have unique name and is specified as
an array. In this template, GTM proxy, coordinator and datanode are configured in four
servers.

-22/59 -

gtmProxyServers

gtmProxyServers specifies server for each GTM proxy. This is also an array. Specify
servers for corresponding GTM proxy specified in gtmProxyNames.

gtmProxyPorts

gtmProxyPorts specifies port number of each GTM proxy. This is also an array like
gtmProxyNames. Port number must be unique in each servers specified in
gtmProxyServers parameter.

gtmProxyDirs

GTM proxy needs unique work directory. gtmProxyDirs parameter specifies this. In
the template, work variable gtmProxyDir is used to assign the same value to each array
element. You can use similar way for you convenience.

gtmPxyExtraConfig

Specify the file name which contain extra gtm proxy.conf configuration lines. Content
of this file will go to all the gtm proxy.conf files you are configuring. Specify “none” if
you are not using this feature.

Details if gtm_proxy.conf file will be found at
http://postgres-xc.sourceforge.net/docs/1_2_1/app-gtm-proxy.html.

Out of gtm proxy.conf configuration, 1isten addresses, worker threads and
gtm connect retry interval will be set by pgxc_ctl and you can change them with
gtmPxyExtraConfig and gtmPxySpecificExtraConfig.

pgxc_ctl will also setup nodename, port, gtm_host, and gtm_port. They comes at the last
of gtm_proxy.conf so specifying them in gtmPxyExtraConfig or
gtmPxySpecificExtraConfig will not work.

gtmPxySpecificExtraConfig

You can specify extra configuration for each GTM proxy with this parameter. Specify file
name which contains extra gtm_proxy.conf lines for each GTM proxy as an element of this
array. Specify “none” element value if you don’t use this.

-23/59 -

http://postgres-xc.sourceforge.net/docs/1_2_1/app-gtm-proxy.html

5.8 Coordinator master configuration

If you became familiar with GTM proxy configuration, you will find coordinator and
datanode configuration is quite similar to it. Yes, it is and with just a few addition.

Coordinator master configuration section looks as follows. Please be careful that
coordinator slave configuration is at the middle of this configuration, which will be
explained in the next section.

First three variable settings for coordMasterDir, coordSlaveDir and coordArchDir
are shortcuts to specify the same value to each array element. You can write any script
for your convenience.

coordNames

Specify each coordinator name in this array element.

-24/59 -

coordMasterDirs

Specify working directory for each coordinator in this array element. In this template,
coordMasterDir variable is used to assign the same value to all the elements.

coordPorts

Specify the port number which each coordinator uses to accept connection from
application or other coordinators. This value must be unique in the server specified in
coordMasterServers variable and coordslaveServers variable if you are
configuring coordinator slaves.

This template is based upon circular HA configuration where each coordinator slave runs
at the next server and master and slave uses the same port. Please note that each
coordinator is assigned different port to meet this configuration.

poolerPorts

Coordinator implements connection pooler internally to pool connection to other
coordinators and datanodes. This variable specifies port number which the pooler uses
internally. The value must be unique in the server specified in coordMasterServers
variable and coordSlaveServers variable if you are configuring coordinator slaves,

coordPgHbaEntries

This is a shortcut of configuring pg_hba . conf file of each coordinator. Each element
specified in this array will be converted into “host all xxx trust” format to go to
pg_hba.conf where xxx is the value of the element. If you don'’t like to have such setups,
you should use coordExtraPgHba Or coordSpecificExtraPgHba variable.

coordMasterServers
This array specifis what server each coordinator runs.
coordMasterDirs

This array specifies work directory of each coordinator. Please note that this template
uses variable coordMasterDir to assign the same value to each array element.

coordMaxWalSenders

This array specifies max_wal_sender configuration parameter value for each coordinator.
If you are configuring coordinator slave, this value must be positive.

coordExtraConfig and coordSpecificExtraConfig

coordExtraConfig specifies the file name which contains postgres.conf configuration
entries for all the coordinators. The following lines are the script to set up the file.

-25/59 -

Just like GTM proxy, you can specify postgres. conf file entry for each coordinator with
coordSpecificExtraConfig array. Specify “none” for the element value if you don’t
use it.

pgxc_ctl will set up port, pooler port, gtm host, and gtm port configuration at the
last part of coordinator’'s postgresgl . conf file. Reconfiguring these parameters in
coordExtraConfig and coordSpecifcExtraConig will not work.

If you are configuring coordinator slave, pgxc_ctl will configure wal level,

archive mode, archive command, and max wal senders as well at the last part.
Reconfiguring these parameters in coordExtraConfig and
coordSpecificExtraConfig will not work either in this case.

coordExtraPgHba and coordSpecificExtraPgHba

coordExtraPgHba specifies the file name which contains lines to go to pg_hba.conf
file of all the coordinators.

Each element of coordSpecificExtraPgHba array specifies the file name which
contains lines of pg_hba. conf file for each coordinator.

-26/59 -

5.9 Coordinator slave configuration

Please note that pgxc_ctl configures coordinator to use the same port as their masters.

Configuration sectio for coordinator slave looks like this:

coordSlave
Specify “y” if you are configuring coordinator slaves. Otherwise, specify “n”.
coordSlaveSync

Specify “y” if you use synchronous wal shipping for the slave. At present, you should

specify “y” because asynchronous wal shipping could lose some transactions at promote
which may make cluster inconsistent.

coordSlaveServers

Specify which servers each coordinator slave runs.
coordSlaveDirs

Specify work directory for each coordiantor slave.
coordArchLogDirs

Specify a directory to receive WAL archive for each coordinator slave.

-27/59 -

5.10 Datanode master configuration

Datanode master and slave configuration is very similar to coordinator master and slave
configuration. One major difference is that datanodes does not have pooler.

Datanode master configuration section is as follows:

luHaxNALSacedas cddatanadeaxilal Sander ddata laMaxialionder FdabacdsdafaxialSendar Pdalancdakaxia lSardar

Similar to coordinator, slave configuration is placed in the middle, which will be described
in the next section.

datanodeMasterDir, datanodeSlaveDir, datanodeArchiLogDir are shortcuts
used in the following configuration.

primaryDatanode

This configuration is unique to the datanode, specifying primary datanode name. Primary
datanode is the datanode where replicated table update takes place first. This is how to
maintain replicated table consisitent. In the future release of Postgres-XC, primary
datanode may be determined automatically and this parameter may become obsolete.

-28/59 -

datanodeNames

This array specifies name of the datanodes. Node name of primaryDatanode has to be
specified in one of the element.

datanodePorts

Specifies the port number which datanode postmaster uses to accept connections.
Master and slave of each datanode uses the same port number and this number has to be
unique in the servers running datanode master or slave, if configured.

datanodePgHbaEntries

Shortcut to specify pg_hba.conf file of each datanode. Please see CoordPgHbaEntires
for details.

datanodeMasterServers
This array specifies server name where each datanode master runs.
datanodeMasterDirs

This array specifies the directory for each datanode master. This hast to be unique in the
server where the coordinator master is running.

datanodeMaxWalSenders

This array specifies max_wal_senders configuration for each datanode’s postgresql.conf.
If you are configuring datanode slave, this value has to be positive.

datanodeExtraConfig

Specify the file name which contains extra lines for postgresqgl.conf file of all the
datanodes. Specify “none” if you are not using this.

datanodeSpecificExtraConfig

This array specifies the file name which contains extra lines for postgresql.conf file of each
corresponding datanode.

datanodeExtraPgHba

Specify the file name which contains additional lines for pg_hba.conf file of all the
datanodes. Specify “none” if you are not using this.

datanodeSpecificExtraPgHba

This array specifies the file name which contains extra lines for pg_hba.conf of each
corresponding datanode.

-29/59 -

5.10 Datanode slave configuration
Similar to coordinators, datanode slave uses the same port number as its master.

Datanode slave configuration section looks like:

datanodeSlave

Specify “y” if you are configuring datanode slaves. Otherwise, specify “n”.
datanodeSlaveServers

This array specifies the server where each datanode slave is running.

datanodeSlaveSync

Specify if you are using synchronous wal shipping. To maintain database consistency,

please specify just “y” here to avoid a chance to lose transactions at promotion.
datanodeSlaveDirs

This array specifies the directory for each datanode.

datanodeArchLogDirs

This array specifies the directory to receive each datanode’s archive WAL.

-30/59 -

6. Initialize Postgres-XC cluster

This chapter describes how to initialize your Postgres-XC cluster.

When you obtain pgxc_ctl configuration file tempalte with pgxc_ctl prepare command, you
have built $HOME /pgxc_ctl direcoty and your pgxc ctl.conf file at this directory.

You have designed your Postgres-XC configuration and edited pgxc ctl.conf file.

You have configured ssh connection from the computer you are running pgxc_ctl to each
server you are running one or more Postgres-XC components.

Now you are ready to initialize your Postgres-XC cluster with pgxc_ctl.
6.1 Invoke pgxc_ctl

Now invoke pgxc ctl. If pgxc_ctl does not find any error in your configuration, it will
print a promt asking for a command.

You may find errors in the configuration. Then, edit the configuration file and start again.
6.2 Deploy Postgrs-XC binaries to servers

You should deploy all Postgres-XC binaries to all the servers you are running Postgres-XC
components. If you have installed this by binary package or manually, you can skip this
section.

If you are deploying binaries, then type deploy all and return. Pgxc_ctl will look for
servers where at least one Postgres-XC component runs and copy binaries to their
installation directory specified as pgxclnstallDir configuration variable.

Please note that deploy all does not take care of PATH environment in your shell. You
should do this manually.

6.3 Initialize the cluster

Type init all and the return. Pgxc_ctl will do everything needed to configure and
start up your Postgres-XC database cluster.

Pgxc_ctl provides more step-by-step initialization. This is for the test and does not
provide cluster configuration using CREATE NODE statement. It is more convenient to
use init all command.

If there’s something wrong, you will obtain an error. Don’t worry. If you need any
correction to your cofiguration file and do it over from the scratch, you should do the
following.

1) Issue kill all command againt pgxc_ctl command prompt to kill all the
processes at servers. It it doesn’t work, then you should kill all the process of gtm,
gtm_proxy and postgres manually by visiting each server.

-31/59 -

2) Issue clean all command against pgxc_ctl to clean up all the working
directories.

3) Fix the issue in the configuration file or in the settings pgxc_ctl assumes.

4) If you need to have additional servers to be involved and deployed Postgres-XC
binaries using deploy all command, issue deploy newserver command
agains pgxc_ctl prompt, which deploys Postgres-XC binaries to newserver.
Otherwiser, install Postgres-XC binary in your way.

5) Start his step from the beginning.

6.4 What init all does

Init all does plenty of work inside to initialize each component and configure them to work
together.

A) Initialize GTM master

1) Kill gtm process if exists, remove the work directory if exists and then create it.
2) Run initgtm utility to initialize gtm environment.

3) Configure gtm. conf file for the master.

4) Setup GTM to start with appropriate GXID value.

5) Start GTM master

B) Initialize GTM slave if configured

1) Kill gtm process if exists, remove work directory if exists and then create it.
2) Run initgtm to initialize gtm environment.

3) Configure gtm. conf file for the slave.

4) Start GTM slave.

C) Initialize GTM proxies if configured
The following steps are done for each gtm_proxy in parallel.

1) Kill gtm_process if exists, remove work directory if exists and them create it.
2) Run initgtm to initialize gtm_proxy environment.

3) Configure gtm proxy.conf file.

4) Start GTM proxy.

D) Initialize coordinator masters

The following steps are done for each coordinator master in parallel.

1) Initialize the work directory.

2) Run initdb to initialize a coordinator.

3) Configure postgresqgl.conf file.

4) If coordinator slave is configured, add wal shipping configuration to
postgresqgl.conf file.

5) Start coordinator master.

-32/59 -

E) Initialize coordinator slaves if configured

The following steps are done for each coordinator slave in parallel.

1) Initialize the work directory.
2) Run pg basebackup utility to build the base backup.

3) Configure recovery.conf.
4) Add postgresql.conf configuration entries to run as the slave.

5) Start coordinator slave.

F) Initialize datanode masters

The following steps are done for each datanode master in parallel.

1) Initialize the work directory.
2) Run initdb to initialize a datanode.

3) Configure postgresqgl.conf file.
4) If datanode slave is configured, add wal shipping configuration to

postgresqgl.conf file.
5) Start datanode master.

G) Initialize datanode slaves if configured

The following steps are done for each datanode slave in parallel.

1) Initialize the work directory
2) Run pg basebackup utility to build the base backup.

3) Configure recovery.conf.
4) Add postgresqgl.conf configuration entries to run as the slave.

5) Start datanode slave.

H) Node configuration

1) Run CREATE NODE and ALTER NODE statement at each coordinator to finalize
the node configuration and make each coordinator ready to accept connections.

-33/59 -

7. Build your database

When you are successfull in init all pgxc_ctl command, you are ready to run psql or
other utilities. Most of PostgreSQL utilities are ported to Postgres-XC.

They accept -h and -p command line option to specify what coordinator to connect. As
an alternative, pgxc_ctl provides two built-in commands, Createdb and Psql.

They choose one of the available coordinator and connect to it. You can specify what
coordinator to connect with - followed by a coordinator name to connect to, not host
name or port number.

So you can create your own database by issuing Createdb newdb against pgxc_ctl
prompt, or pgxc_ctl command argument.

-34/59 -

8. Run your SQL statements

Pgxc_ctl provides Psql built-in command which invokes psql against specified coordinator.
You can specify the coordinator name after -” argument like

$ Psql - coord1

Where, coord1 is the coordinator name. If you don’t specify coordinator name, pgxc_ctl
will choose one. You can specify any other psql command options too.

Then you can issue any coordinator Postgres-XC SQL statements.

-35/59 -

9. Writing applications

Postgres-XC’s libpq interface is binary compatible with PostgreSQL so you can write your
application with the same manner as PostgreSQL. Because of the clustering nature,
there are several SQL statements which Postgres-XC does not support. Also, there are
several SQL statements specific to Postgres-XC. For details, please refer to Postgres-XC
document at http://postares-xc.sourceforge.net/docs/1_1/ or
http://postgres-xc.sourceforge.net/docs/1_2 1/

-36/59 -

http://postgres-xc.sourceforge.net/docs/1_1/

10. Backing up Postgres-XC cluster

10.1 pg_dump and pg_dumpall

As in the case of PostgreSQL, pg_dump and pg_dumpall are the basic backup tool of
Postgres-XC. You can connect to one of the coordinators using -h and -p option (sorry,
pgxc_ctl does not provide buildt-in command such as Pg_dump/Pg_dumpall so far). This
is almost the same as PostgreSQL.

Backup is consisitent and can be restored using psql or pg_restore.

10.2 WAL-shipping backup

You can configure Postgres-XC coordinator and datanode to enable WAL-shipping backup
manually. At present, pgxc_ctl does not support this feature. This paper does not
provide any further description on it so far.

Pgxc_ctl provides master/slave configuration and failover of each node. Please use this
feature now.

-37/59 -

11. Recovery from the backup

11.1 Recovery with pg_dump/pg_dumpall

You can restore the database from the backup you made using pg_dump or pg_dumpall.
First, re-initialize your cluster and then apply the dump using psql (when the backup was

taken in text format) or pg_restore.
11.2 Recovery from WAL shipping archive

For the same reason as 10.2, this is out of the scope of this paper.

-38/59 -

12. Node failover

If you configure slave for GTM, coordinator or datanode and one of hem fails, you can
promote the slave and swithch over the master.

Pgxc_ctl provides only manuall promotion, not automatic failover. The background is as
follows:

1) Automatic failover should be integrated with other resource failover, such as server
hardware, network, storage and other software resource such as web server and
application server.

2) 1) very widely depend upon individual system integration/configuration and it may
not be adequate to provide automatic failover system just within database system.

The following sections will describe pgxc_ctl command interface to promote slaves.
12.1 GTM slave promotion

When GTM master does not work and you are running GTM slave, you can promote GTM
slave to the master. Here is how to do at pgxc_ctl.

You have configured GTM Proxy

With GTM Proxy, you can promote GTM slave without stopping Postgres-XC cluster. If
live transactions needs to communicate with GTM while GTM master is out, they will be
aborted but you don’t have to restart nodes.

First, issue failover gtm command at pgxc_ctl command prompt like:
PGXC$ failover gtm

Then, you issue reconnect gtm_proxy all command like:

PGXCS reconnect gtm proxy all

Then, all gtm_proxies will connect to the new master just promoted.
Through this step, the following will be done:

1) Rungtm ctl promote command at gtm slave.
2) Configure gtm. conf of the promoted gtm so that it starts as the master next time.
3) Update your configuration file to reflect these changes. Backup it if specified.

Please note that these commands does not stop old GTM master.
You have not configured GTM Proxy

Pgxc_ctl does not provide a convenient way to deal with this situation. You have to do
the following manually.

-39/59 -

1) Run gtm ctl promote command at gtm slave.
2) Editpostgresqgl.conf file so that they connect to the new gtm master.
3) Restart all the coordinators and datanodes.

-40/59 -

12.2 Coordinator slave promotion

If any coordinator fails and it has a slave running, you can promote it. To do this, you
should invoke failover coordinator command like:

PGXC$ failover coordinator coodname
where coordname is the coordinator name to promote.
Pgxc_ctl will do the following:

1) Because coordinator slave is running at a different server for the master, determine
which gtm_proxy promoting coordinator should connect.

2) Unregister the coordinator from GTM.

3) Promote the slave using pg ctl promote.

4) Editpostgresqgl.conf file to reflect the change in target gtm_proxy. If
gtm_proxy is not configured in the server, gtm will be chosen.

5) Issue pg ctl restart to reflect these changes.

6) Update pgxc_ctl configuration file and backup it if specified.

7) Issue ALTER NODE statement and pgxc pool reload() function at all the
coordinators to reflect this change.

Please note that all the other coordinator masters should be running to handle ALTER
NODE statement.

-41/59 -

12.3 Datanode slave promotion

If any datanode fails and it has a slave running, you can promote it. To do this, you
should invoke failover datanode command like

PGXCS$ failover datanode datanodename

where datanodename is the datanode name to promote.

Pgxc_ctl will do the following:

1)

2)
3)
4)

5)
6)
7)

Because datanode slave is running at a different server for the master, determine
which gtm_proxy promoting datampde should connect.

Unregister the datanode from GTM.

Promote the slave using pg ctl promote.

Edit postgresgl . conf file to reflect the change in target gtm_proxy. If
gtm_proxy is not configured in the server, gtm will be chosen.

Issue pg ctl restart to reflect these changes.

Update pgxc_ctl configuration file and backup it if specified.

Issue ALTER NODE statement and pgxc pool reload () function at all the
coordinators to reflect this change.

Please note that all the coordinator masters should be running to handle ALTER NODE
statement.

-42/59 -

13. Adding nodes

Pgxc_ctl provides series of command to add nodes. While adding a node, you don’t
have to stop the whole Postgres-XC cluster but some node may need restart. This
chapter describes the basics of each node addition.

13.1 Adding GTM slave

If you did not configure GTM slave or you don’t have GTM slave because original GTM
slave has been promoted to the master, you can add GTM slave to your Postgres-XC
cluster.

Pgxc_ctl provides add gtm slave command for this purpose. The syntax of the
command is as follows:

PGXC$ add gtm slave name host port dir

name, host, port, and dir are the node name, host where GTM slave runs, port
assigned to GTM slave to accept connections and its working directory, respectively.

Adding GTM slave does not affect active transactions.
When adding GTM slave, pgxc_ctl does the following:

1) Update pgxc_ctl configuration file and backup if specified.
2) Initialize gtm slave and startit. See 6.4 B) for details.

-43/59 -

13.2 What about GTM master?

GTM master is Postgres-XC’s vital component and it has to be configured and running.
Pgxc_ctl does not provide a means to “add” GTM master. To move GTM master to other

server, run gtm slave at the target server and promote it.

-44/59 -

13.3 Adding a GTM proxy

If you are adding coordinator or datanode at a server where gtm_proxy is not configured,
you may want to add gtm_proxy at this server.

You can do this by issuing add gtm proxy command like:
PGXCS add gtm proxy name host port dir

name, host, port, and dir are the node name, host where the GTM proxy runs, port
assigned to GTM proxy to accept connections and its working directory, respectively.

If you have not installed Postgres-XC binary to the server, you should do it as described in
6.2.

When adding GTM proxy, pgxc_ctl will do the following:

1) Update pgxc_ctl configuration file and backup it if specified.
2) Configure GTM proxy and startit. See 6.4 C) for details.

-45/59 -

13.4 Adding a coordinator master

If you have not installed Postgres-XC binary to the server, you should do it as described in
6.2.

If you are adding a coordinator master at a server where GTM proxy is not configured, you
may want to configure it first, as described in 13.3.

Adding a coordinator master in pgxc_ctl is simple. Just invoke add coordinator master
command like:

PGXCS$S add coordinator master name host port pooler dir

name, host, port, pooler, dir are the node name, host where the new coordinator
master runs, port assigned to the coordinator to accept connections, port assigned to
coordinator connection pooler, and its working directory, respectively.

When adding a coordinator master, pgxc_ctl will do the following:

1) Update pgxc_ctl configuration file and back up it if specified.

2) Initialize the working directory and run initdb to for initial configuration of the new
coordinator master.

3) Determine GTM proxy or GTM to use and update new coordinator master’'s
postgresqgl.conf file.

4) Editpg hba.conf file to accept minimum connection specified in
coordPgHbaEntries variable. See 5.8 for details.

5) Choose an active coordinator and issue pgxc_lock for backup () to block
DDL issued to all the active coordinators.

6) Choose an active coordinator and issue pg dumpall to dump all the catalog
information to be imported to the new coordinator master.

7) Start the new coordinator master with -z restoremode and import the catalog
exported at the step 6).

8) Stop the new coordinator and start it with -2 coordinator option as a
coordinator.

9) Issue CREATE NODE or ALTER NODE and then pgxc pool reload() atall the
coordinators to reflect the change.

10) Close the session opened in the step 5) to release DDL lock.

-46/59 -

13.5 Adding a coordinator slave

Please consider to install Postgres-XC binaries and configure GTM proxy as described in

13.4.

You can add a coordinator slave just as follows:

PGXCS$S add coordinator slave name host dir archDir

name, host, dir and archDir are the node name, host where the new coordinator slave
runs, its working directory and the directory to receive WAL archive from its master,
respectively.

When adding a coordinator slave, pgxc_ctl will do the following:

1)
2)
3)

4)
5)
6)

7)
8)

9)

Initialize the working directory and archive WAL directory.

Reconfigure the master's postgresql.conf file to begin WAL shipping.
Reconfigure the master's pg _hba. conf file to accept WAL shipping connection
from the new slave.

Update pgxc_ctl configuration file and backup it if specified.

Restart the master to relfect changes done in 2) and 3).

Run pg basebackup to build the master’s base backup at the slave’s work
directory to start with.

Update the slave’s postgresql.conf to run as a slave.

Configure the slave’s recovery. conf file to connect to the master for log
shipping.

Start the slave.

-47/59 -

13.6 Adding a datanode master

Adding a datanode master is similar to adding a coordinator master as described in 13.4.
Please consider to install Postgres-XC binaries and GTM proxy if needed, as described in
13.4.

To add a datanode master, you can issue add datanode master command as follows:
PGXC$ add datanode master name host port dir

name, host, port, and dir are the ndoe name, host where the new datanode master
runs, port number used to accept connections, and the working directory, respectively.

Please note that adding a datanode master does not redistribute the table data
automatically because you can specify a set of nodes to distribute or replicate each table.
To redistribute tables, use ALTER TABLE statement as described in
http://postgres-xc.sourceforge.net/docs/1_2_1/sql-altertable.html and
http://postgres-xc.sourceforge.net/docs/1_1/sql-altertable.html.

When adding a datanode master, pgxc_ctl will do the following:

1) Update pgxc_ctl configuration file and back up it if specified.

2) Initialize the working directory and run initdb to for initial configuration of the new
datanode master.

3) Determine GTM proxy or GTM to use and update new datanode master’s
postgresqgl.conf file.

4) Editpg hba.conf file to accept minimum connection specified in
datanodePgHbaEntries variable. See 5.10 for details.

5) Choose an active coordinator and issue pgxc lock for backup () to block
DDL issued to all the active coordinators*.

6) Choose an active datanode and issue pg dumpall to dump all the catalog
information to be imported to the new coordinator master.

7) Start the new datanode master with -Z restoremode and import the catalog
exported at the step 6).

8) Stop the new datanode and start it with -z datanode option as a datanode.

9) Issue CREATE NODE and pgxc pool reload() atall the coordinators to reflect
the change.

10) Close the session opened in the step 5) to release DDL lock.

* In the current release, pgxc_lock_for_backup() is targetted to a datanode master and does not
propagate to other nodes. It should have targeted to a coordinator. Fix will be committed and available
at the next minor release.

-48/59 -

http://postgres-xc.sourceforge.net/docs/1_2_1/sql-altertable.html
http://postgres-xc.sourceforge.net/docs/1_1/sql-altertable.html

13.7 Adding a datanode slave

Please note that the master datanode must be configured and running to add a datanode

slave.

Please also consider to install Postgres-XC binaries and configure GTM proxy if

needed, as described in 13.4.

Adding datanode slave is quite similar to adding coordinator slave. You can do this as
follows:

PGXCS$ add datanode slave name host dir archDir

name, host, dir and archDir are the node name, host where the new datanode slave
runs, its working directory and the directory to receive WAL archive from its master,
respectively.

When adding a datanode slave, pgxc_ctl will do the following:

1)
2)
3)

4)
5)
6)

7)
8)

9)

Initialize the working directory and archive WAL directory.

Reconfigure the master's postgresql . conf file to begin WAL shipping.
Reconfigure the master’s pg_hba. conf file to accept WAL shipping connection
from the new slave.

Update pgxc_ctl configuration file and backup it if specified.

Restart the master to relfect changes done in 2) and 3).

Run pg basebackup to build the master’s base backup at the slave’s work
directory to start with.

Update the slave’s postgresqgl.conf to run as a slave.

Configure the slave’s recovery.conf file to connect to the master for log
shipping.

Start the slave.

-49/59 -

14. Removing nodes

As mentioned, GTM master is a vital Postgres-XC component and it is not allowed to
remove it. GTM master has to be running when Postgres-XC cluster is running.

14.1 Removing GTM slave

You should stop GTM slave before removing. Pgxc_ctl provides command to do this:
PGXC$ stop gtm slave

Then, you can remove GTM slave by:

PGXC$ remove gtm slave

To remove gtm slave, pgxc_ctl does the following:

1) Update pgxc_ctl configuration file and back up it if specified.

-50/59 -

14.2 Removing GTM proxy

Before you remove a gtm proxy, you should stop it. Pgxc_ctl provides a command to do
as follows:

PGXCS stop gtm proxy name

where name is gtm_proxy name to stop.

Then, you can remove the gtm_proxy as follows:
PGXCS remove gtm proxy name

Please note that you should configure coordinators and datanodes connecting to this
gtmm proxy and restart them. It is advised that you can remove a gtm proxy if no
coordinators or datanodes are connected to it any longer.

-51/59 -

14.3 Removing coordinator master

Because a coordinator does not store uesr data, it is not halmful to remove a coordinator
master. Please do not issue DDL while you are removing coordinator master, or such
DDL could be propagated to the removeing coordinator.

Pgxc_ctl does not care if the removing coordinator master is running. If it is runnig,
pgxc_ctl will stop it.

The command to remove a coordinator master is as follows:
PGXC$ remove coordinator master name

where name is the coordinator node name to remove.
Pgxc_ctl will do the following to remove a coordinator master.

1) Remove the slave of the removing coordinator master if configured. See the next
section for details.

2) Issue DROP NODE statement at all the other coordinator to remove the coordinator
from all the other coordinators.

3) Stop the coordinator master if running.

4) Update pgxc_ctl configuration file and back up it if specified.

-52/59 -

14.4 Removing a coordinator slave

You can remove a coordinator slave by following pgxc_ctl command.
PGXC$ remove coordinator slave name

where name is coordinator name to remove.

Pgxc_ctl will do the following to remove a coordinator slave.

1) If the coordinator slave is running, stop it.

2) Update the master’s configuration to disable log shipping.
3) Restart the master.

4) Update pgxc_ctl configuration file and back up it if specified.

-53/59 -

14.5 Removing a datanode master

Before you remove a datanode master, please be sure that the removing datanode does
not contain any user data. You can check this by ussing \d+ pattern command to
psql. Issue ALTER TABLE statement to each table to remove the datanode from its

replication or distribution nodes.

You can remove a datanode master with the command:
PGXCS$ remove datanode master name

where name is the datanode node name to remove.
Pgxc_ctl will do the following to remove a datanode master.

1) If slave is configured for this mater, remove it. See 14.6 for details.
2) Issue DROP NODE statement in all the coordinators to remove this datanode.
3) Update pgxc_ctl configuration file and back up it if specified.

-54/59 -

14.6 Removing a datanode slave

Removing a datanode slave is quite similar to removing a coordinator slave.

this by the following pgxc_ctl command:

PGXC$ remove datanode slave name

where name is the datanode name to remove.

Pgxc_ctl will do the following to remove a datanode slave.

1) If the coordinator slave is running, stop it.

2) Update the master’s configuration to disable log shipping.
3) Restart the master.

4) Update pgxc_ctl configuration file and back up it if specified.

-55/59 -

You can do

15. Star Schema (appendix)

As described in 2.4, Postgres-XC architecture is build to leverage a database design which
consists of few but big tables updated frequently and smaller but many tables which are
very stable. This structure is known as star schema. This section describes about star
schema and how Postgres-XC leverages it.

Star schema is found in many data warehouse and OLTP applications. Star schema
consists of a few and big “fact” tables and many “dimention” tables. For example, sales
database may include “sales fact” as a fact table and “product dimention” and “store
dimention” table. Fact tables are big in size and updated frequently. On the other
hand, dimention tables are small in size and more stable compared with fact tables.

Figure 7 shows typical star schema taken from
http://support.sas.com/documentation/cdl/en/spdsug/64018/HTML/default/viewer.htm#n0m
[j75x9c4dtzn1ves84e1op3jt.htm

|
PRODUCTS SUPPLIER
Primary Key Primary Key
PRODUCT_CODE SUPPLIER_ID
*1 row i product *1 row / supplier
i) * 25 unique
* 1,500 rows total suppliers
Dimension Table Dimension Table

SALES
Foreign indexes:
*PRODUCT_CODE
* STORE_NUMBER
" SUPPLIER_ID
" SALES_DATE

Fact Tahle

LOCATION TIME
Primary Key Primaiy Key
STORE_NUMBER SALES_DATE
*1 row / Store *1 row { day
* 500 unique * 3 years' rofling
stores daa window
Dimension Tahle : |=395 rows 10t
Dimension Tahle

Figure 7 Typical star schema
(See above for the source)

Postgres-XC architecture is build to leverage star schema characteristics. Usually, if
there’s more than one fact tables, they tend to share candidate keys. In Postgres-XC, it is
desirable to shard fact tables using one of such common candidate key. In this way, we
cay shard one (or few) big table into smaller pieces and store them in different server

-56/59 -

http://support.sas.com/documentation/cdl/en/spdsug/64018/HTML/default/viewer.htm#n0mlj75x9c4dtzn1ves84e1op3jt.htm
http://support.sas.com/documentation/cdl/en/spdsug/64018/HTML/default/viewer.htm#n0mlj75x9c4dtzn1ves84e1op3jt.htm

(datanode). The key used to determine what datanode each row goes is called
“distribution key”.

Then updates by multiple transactions can be distributed among datanodes and they can
be done in parallel. With more datanode, we can run more updates to fact tables in
parallel. This is basically the background that Postgres-XC provides write scalability.
Figure 8 illustrates this.

Many updating transactions

RAREREREERE R NI RIRRERRE.

Big fact table
Less updating Less updating Less updating Less updating Less updating
transactions transactions transactions transactions transactions
Small shard Small shard Small shard Small shard Small shard
|
Y

Done in parallel in different servers

Figure 8 Write scalability in Postgres-XC

We replicate all the dimention tables to all the datanodes. Because most of the joins are
done between a fact table and dimention tables, or among fact tables with distribution key
involved, we can perform big join as a union of joins between each shard and replicated
tables locally in each datanode in parallel. This is how Postgres-XC provides read
scalability.

If a statement has additional predicates in WHERE clause to locate a datanode where the
target rows are stored, and most of OLTP queries are, then Postgres-XC can select only a
few of datanode to perform such a query.

Figure 9 and Figure 10 illustrate this.

Please note that updating dimention tables does not scale. Each replica of a dimention
table (replicated table, in XC) has to be updated separately. Although each separate
update statement are performed in parallel, we should not expect write scalability in this
case.

-57/59 -

Many updating transactions

RIRR IR RN R NI NI ERRE

Big fact table

Jain

Dimention tables

]
<>

Less updating Less updating Less updating Less updating Less updating
transactions transactions fransactions transactions transactions
Small ghard Small shard Small shard Small shard Small shard

Join Join Join Jaoin Join

[
| .
Dimantion
tables

Dhrnention
tahles

|

|
Dirmnention
tables

Dimention
takles

Dimention
tables

f

Done in parallel in different servers

Figure 9 Decompose big statement into smaller shards.

Big fact table

Where clause determines target

datanode to handle.

Jain

Dimention tables

I

v

Small shard

Jain

Dimantion
fables

Y

Figure 10 Statement can be optimized more if WHERE clause determines the target

There could be exceptional case where an application needs a join between fact tables
without distribution key involved.

In this case, Postgres-XC pushes down as many

-58/59

operation as possible to each datanode but does final join operation at the top level
(coordinator).

In other words, if an application cannot utillize this start schema, you should be very
careful to design the table distribution to use Postgres-XC’s distributed query processing.

-59/59 -

